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Abstract. By using a coarse-grain representation of the molecular electronic density, we demonstrate 
that the value of the condensed Fukui function at an atomic site is directly related to the polarization 
charge (Coulomb hole) induced by a test electron removed (or added) from (at) the atom. The link between 
the formation of an electron-hole pair and the condensed Fukui function provides insights on the possible 
negativity of the Fukui function which is interpreted in terms of two phenomena: overscreening and over-
strengthening. 
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1. Introduction 

The Fukui function1,2 is a reactivity index which 
measures the propensity of a region in a molecule to 
accept or donate electrons in a chemical reaction. It 
generalizes the concept of a frontier orbital3 by includ-
ing the relaxation of the orbital upon an electron 
transfer. More precisely, in Density Functional The-
ory (DFT), the Fukui function f(r) is the derivative 
of the density ρ(r) relative to the total number of 
electrons N at constant external potential vext:1,2 
 
 f(r) = [∂ρ(r)/∂N]vext. (1) 

 
The reactivity of a molecule is more easily discussed 
by using a discrete index, the condensed Fukui function 
fk,

4 which is obtained by partitioning the density of 
electrons between fragments: 
 
 fk = [∂Nk/∂N]vext, (2) 

 
where Nk is the number of electrons in fragment k 
(most often an atom) of the molecule. In practise, the 
total number of electrons N is a discontinuous variable 
and the derivatives in (1) and (2) must be computed 
by using finite difference approximations2 or by using 
a continuous model of the ground-state energy E(N) 
which extrapolates between integer numbers N.5,6 
 A large number of works have been devoted to the 
formulation and to practical calculations of the Fu-

kui function7–14 and in particular of the corresponding 
condensed (atomic) reactivity index15–25 for which 
the possible negativity of the function is debated. 
The interested reader may consult the following recent 
reviews of the enormous literature devoted to the reac-
tivity indexes.26,27 
 The Fukui function is usually evaluated and inter-
preted from the computation of a change of the elec-
tronic density due to the removal (addition) of one 
electron from (to) the whole molecule. In the present 
paper, we develop a new local point of view by con-
sidering the removal of one electron from an atom in 
a molecule. Using this “gedanke” local ionization 
process, we demonstrate that the value of the con-
densed Fukui function of the atom is directly related 
to the (integrated) positive screening charge accom-
panying a test electron in the molecule. 
 In §2, the Fukui function is related to the charge 
induced by a hole or test electron in the framework 
of the electronegativity equalization method (EEM). 
In §3, we derive and discuss the conditions for 
which the condensed Fukui function might be nega-
tive and introduce two new concepts: overscreening 
and overstrengthening. In the last section, one 
briefly discuss the implications of the present results 
in exact DFT. Some details concerning the two-sites 
model used in the text are given in appendix A. 

2. Fukui function and image charge 

The relation between the Fukui function and the 
screening charge is derived in the framework of 
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EEM5 where E(N) is a quadratic interpolation of the 
values of the energy at integer N. EEM uses a coarse-
grain representation of the molecular electronic den-
sity in which ρ(r) is represented by non-overlapping 
spherical atomic densities centered at the nuclei po-
sitions interacting with each other via the Coulomb 
interaction (Figure 1). Because the electrostatic potential 
outside the sphere confining the atomic density is 
exactly the potential which would be set up by the 
total charge placed at the center of the sphere, the 
molecular density is simply replaced in this model 
by a set of atomic charges Nk at the nuclei. The con-
densed Fukui function of the atom k is given by (2). 
 On notes first that the condensed Fukui index of 
an atom in a molecule obeys the following equation 
in EEM: 
 

 
2

,
| |

M

k k k
k k k k

e
f fη η ′ ′ ′′

′′ ′≠ ′ ′′

= +
−∑ R R

 (3) 

 
where the sum is over all the M atoms of the mole-
cule but k′. Rk′ is the position of the atom k′  
and ηk′′ ≡ [∂2E/∂N2

k′]vext is its chemical hardness.5 
η ≡ [∂2E/∂N2]vext

5 is the molecular hardness and e is 
the charge of the electron. Equation (3) is the EEM 
discrete form of an exact property of f(r).28 
 
 
 

 
 
Figure 1. (a) Coarse-grain representation of the elec-
tronic density of an arbitrary molecule divided in an atom 
and a fragment. (b) The corresponding two-site model 
(see text). 

 One isolates next one atom k ≠ k′ from the sum in 
(3) as follows: 
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where hk′k″ is a square hardness matrix consisting of 
(M – 1) rows and columns defined by hk′k″ ≡ e2/|Rk′ – 
Rk″| if k′ ≠ k″ and hk′k′ ≡ ηk′. This matrix represents 
the hardness kernel29 of a fragment build from the 
molecule by removing the atom k (the molecular ge-
ometry is frozen as shown in figure 1a). The formal 
solution of (4) is 
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in which k″′ is any atom of the molecule but k and 
h–1 k′′′k′ is the inverse hardness matrix of the fragment. 
By summing the two sides of (5) over the M – 1 atoms 
of the fragment we obtain the following expression: 
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in which η(k) is the chemical hardness of the fragment 
build from the molecule by excluding the atom k. 
η(k) is related to the inverse hardness matrix of the 
fragment by the following relation:2 
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Equation (6) has a profound physical meaning. The 
first term in right-hand side of (6) represents the 
fractional electron number q(k) carried out by the 
fragment when the molecule is charged with one 
electron. By using the definition of the Fukui func-
tion (2), and its normalization condition, one finds 

 ( ) 1 .k kq k f f′′′
′′′≠

≡ = −∑  (8) 

The second term in the right-hand side of (6) is pro-
portional to the electronic polarization charge qg(k) 
induced on the fragment by the potential set up by a 
test electron placed at the position of the atom k: 
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qg(k)e is in fact the so-called electric image charge,30 
i.e. the net charge induced on the fragment by a test 
electron placed at Rk when the fragment is grounded. 
Indeed, the charge δq′′′ induced at site k′′′ in the 
fragment due to the electric potential of a test electron 
at k is given by the following relation in a linear re-
sponse theory:31 
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in which χk′′′k′ is the condensed density-density response 
of the fragment. χ is related to the fragment hardness 
kernel h by the so-called Berkowitz–Parr relation29 
which can be written in condensed form as follows: 
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In (11), the second term vanishes if the chemical po-
tential of the fragment is kept constant (grounded 
molecule).6 Therefore for a molecule in contact with 
an infinite electron reservoir, the charge induced at 
k′′′ within the fragment due to the electric potential 
of a test electron at k is according to (10) and (11) 
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The net charge induced by the test electron at k is 
thus given by (9), obtained by summing (12) over all 
the atoms of the fragment. Of course, in a linear re-
sponse theory, the charge qh

g(k) induced by a hole 
created in the electronic density of the atom is 

 qg
h(k) = –qg(k). (13) 

Using (6), (8) and (9), we arrive at the following 
simple relation: 
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Equation (14) means that the ratio between the 
chemical hardness of a molecule and the chemical 
hardness of any fragment of this molecule obtained 
by removing an atom is equal to an effective elec-
tronic charge qeff. This charge is the difference between 
the real charge on the fragment when the molecule is 
charged with one electron and the polarization charge 
induced on the fragment by a charge equal to the 

Fukui function of the atom removed from the mole-
cule. The fact that this property holds for any M – 1 
fragment is due to the variational principle (3). 
Equation (14) may be used iteratively. For instance, 
the ratio between the molecular hardness and the 
hardness of any atom ηk is 

 1 2
1

( , ,..., ),
M

eff i
ik
i k

q k k k
η
η =

≠

= ∏  (15) 

in which in obvious notations qeff(k1, k2, …, kn) repre-
sents the effective charge of the fragment build from 
the molecule by removing the n atoms k1, k2, …, kn. 
 A key, exact, formula for the condensed Fukui 
function of any atom of the molecule in EEM may 
be now deduced from (8), (9), (13), and (14) 

 )](1/[]1[ )( kqf h
gk k −−= η

η . (16) 

Equation (16) shows clearly that there are two fac-
tors governing the value of the condensed Fukui 
function of an atom k in the molecule: the charge in-
duced (image charge) on the other atoms by the re-
moval of one electron at site k (denominator of (16)) 
and the change of the molecular hardness due to the 
removal of the atom k (numerator of (16)). Alterna-
tively, the denominator can be interpreted in terms 
of the screening charge qg(k) accompanying a test 
electron of the atom k. 
 Using (16) the so-called local condensed softness 
sk = fk/η32 has also a simple form 
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where the softnesses S and S(k) are respectively 1/η 
and 1/η(k). The local softness of an atom is there-
fore proportional to the difference between the 
global softnesses of the molecule and of the molecu-
lar fragment obtained by excluding the atom from 
the molecule. Analogous conclusions (16) and (17) 
could be derived in exact density functional theory 
instead of the discrete EEM framework as briefly 
discussed below. 

3. On the negativity of the condensed Fukui 
function 

3.1 General conditions 

The present approach provides new insights in the 
debate on the possible negativity of the condensed 
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Fukui function.19–22,24 We expect the positivity of 
f(r) at all points in space if f(r) is interpreted as a 
probability density to find the electron added to (or 
removed from) the molecule in a volume element dr. 
This interpretation is suggested by the approxima-
tion of the Fukui function by the HOMO and LUMO 
frontier orbital densities. The corresponding approxi-
mate Fukui index fk is thus interpreted as a probabil-
ity. We emphasizes that it should therefore not only 
be positive but also smaller or equal to one (for a 
two-site model, because of the normalization condi-
tion f < 0 on one site implies f > 1 on the other one). 
On the other hand, no conclusions on the positivity 
of the Fukui function can be deduced if it is inter-
preted as differences of probabilities like in the  
finite difference approximation of f(r). Some numeri-
cal computations of the Fukui function show that fk 
may be negative.19 One should note that the defini-
tion of the condensed Fukui function is not unique 
and that its precise value depends on the partitioning 
scheme used. 
 In the present approach (16), one deduces two 
analytical conditions for which the condensed Fukui 
function might be negative: 
 
 qg

h(k) > 1 and η < η(k), (18) 
 
 qh

g(k) < 1 and η > η(k). (19) 
 
The first condition, (18), means an overscreening of 
the hole created at site k, i.e. an image charge qg

h(k) 
larger than 1 (or an image charge qg(k) larger than –1 
for an electron test at k). The second condition, (19), 
means an overstrengthening which occurs if the ad-
dition of the atom k to the fragment increases the 
molecular hardness. Between these two conditions, 
one has the perfect screening condition: 
 
 qh

g(k) = 1 and η = η(k), (20) 
 
where the equality of the hardnesses in (20) is required 
to maintain a finite Fukui index at site k. In EEM, 
we show now explicitly that for a two-site model the 
conditions (18) and (19) cannot be realized for stable 
systems. 

3.2 Application to a two-site model 

The hardness η of the molecule can be evaluated 
analytically from the hardnesses of the atom ηk and 
of the fragment η(k) in a two-site model where we 

replace all the atoms of the fragment by a single effec-
tive point entity as shown in figure 1b. The proper-
ties of such a model are derived in detail in appendix 
A. We obtain immediately a standard formula for 
the molecular hardness15 
 

 ,]2)(/[])()([
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k kk D −+−= ηηηηη  (21) 

 
in which D is the distance between the atom k and a 
site of hardness η(k) representing the fragment. The 
physical and chemical properties of the model depend 
in fact of the following dimensionless parameters: 
 
  λk ≡ ηkD/e2, (22) 
 
 λ(k) ≡ η(k)D/e2, (23) 
 
   λ ≡ ηD/e2. (24) 
 
Using (21), we derive the following relation between 
these quantities (A12): 
 

 2( ) /[1 {( ( ) 1) /( ( ) 1)}] .kk k kλ λ λ λ λ= + − −  (25) 
 
As required by the variational principle of DFT, we 
assume that the molecule is stable relative to charge 
fluctuations at fixed external potential. In other 
words, we choose a quadratic form E(N) which is 
positive definite. As shown in the appendix (A5–A7), 
this implies the following constraints on the model 
parameters: 
 
  λk > 0, (26) 
 
  λ(k) > 0, (27) 
 
 λkλ(k) > 1. (28) 
 
One deduces from (26) and (27) that the fragment 
and the atom must also be stable relative to charge 
fluctuations when separated. In a two-site model, the 
hardness kernel of the fragment and its inverse are 
reduced to the scalars η(k) and 1/η(k) respectively. 
According to (9) and (13), the image charge induced 
on the fragment is therefore 
 
 qh

g(k) = 1/λ(k). (29) 
 
From (16), one finds that the Fukui function of the 
atom is given by 
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Perfect screening occurs for λ(k) = 1 for which 
λ = 1 as deduced from (21): The condition (20) is 
thus fulfilled and it is easily shown that the site k is 
forbidden to any additional electron and is never de-
populated when an electron is removed because 
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From elementary electrostatics, one expects a per-
fect screening in EEM only for atoms embedded in 
the interior of large macromolecules as indeed ob-
served in our recent ab initio calculations.33 For a 
two-site model, a perfect screening would corre-
spond to an atom k with no (effective) size. Indeed, 
we can give a geometrical interpretation of the hard-
nesses using Born’s model.34 In Born’s model, we 
define the following effective radii: 
 
 r*k  ≡ e2/ηk, (32) 
 
 R*k  ≡ e2/η(k), (33) 
 
 R* ≡ e2/η, (34) 
 
which can be interpreted as electrostatic “compli-
ances” or “capacitances”.35,36 In these notations, one 
has 
 
 λk = D/r*k , (35) 
 
 λ(k) = D/R*k , (36) 
  λ = D/R*. (37) 
 
The distance between the two-sites is set by the pa-
rameter δ ≡ D – (R*k  + r*k ) (see figure 1b). For λ(k) = 1, 
δ = –r*k  and the nucleus of the atom is at the surface 
of the sphere of radius R*k  representing the fragment. 
Such a large overlap of the spheres is not consistent 
with a multipole representation of the density of the 
electrons if the effective Born radii are interpreted 
as the actual sizes of the fragment and of the atom. 
Perfect screening is not expected unless the effective 
size of the atom r*k  is vanishing which means that 
the atom is replaced by a point charge on site k with 
ηk = +∞. For a point charge, (29) is nothing else 
than the classical expression of the image charge30 

induced by a point charge at a distance δ from the 
surface of a metallic sphere of radius R*k , that is  
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k
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and perfect screening is indeed reached when the 
point charge is exactly at the surface of the sphere. 
 Overscreening occurs for λ(k) < 1. Using the defi-
nitions of the Born radii (36) and (37), this means 
that the overstrengthening occurs as soon as the 
atom nucleus enters in the fragment sphere: D < R*k  
or in other words δ < –r*k . Again this situation is not 
consistent with the present multipole representation 
if the Born radii represent the actual sizes of the 
atom. We note that fk will be negative if in addition 
λ(k) > λ, (18). As shown in the appendix, (A14), this 
last condition is always true for a stable system. 
Therefore, for a stable system for which E(N) is 
positive definite, the Fukui function becomes nega-
tive as soon as the overscreening appears, i.e. as 
soon as the atom nuclei enters in the density of the 
spherical fragment: A large overlap of the densities 
of the atom and of the fragment is not possible if the 
Born radii are interpreted strictly as the actual sizes 
of the atom and of the fragment but cannot be totally 
excluded as the radii are effective. 
 Overstrengthening occurs for λ(k) < λ. Using the 
definitions of the Born radii (36), this means that the 
size of the fragment is larger than the molecular 
size: R* < R*k  which is impossible for the geometri-
cal interpretation of the radii represented in figure 1. 
fk is negative if we have in addition λ(k) > 1, (19). 
However as shown in appendix (A15), the condition 
λ(k) < λ is not compatible with a stable system. The 
negativity of fk in case of overstrengthening indi-
cates that the system is unstable or in other words 
that E(N) is not positive definite. 
 Divergent hardness is another special case corre-
sponding to λ = ± ∞ for which the Fukui function 
diverges and may be negative. Using the definitions 
of the Born radii (37), this occurs for a molecule with 
a zero effective radius. According to (21), the diver-
gence appears when the following condition is true: 
 
 λk + λ(k) = 2, (38) 
 
and λkλ(k) ≠ 1. As shown in the appendix, (A16), 
the Fukui function fk is then equal to – ∞(+ ∞) for 
λ(k) > 1(λ(k) < 1). This very pathological case is 
precisely the condition of divergence of the con-
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densed Fukui function of a two-site model discussed 
recently.24 

4. Summary and discussion 

The Fukui function describes a response to the 
global transfer or removal of an electron to a mole-
cule and is widely used to analyze the chemical re-
activity. In the present work, the Fukui function is 
related to a local property: the screening charge in-
duced on the rest of the molecule by the local 
ionization of the molecule in the framework of 
EEM. Alternatively, this screening charge (with the 
sign changed) can be viewed as the positive hole 
accompanying a test electron in the molecule when 
the molecule is connected to an infinite reservoir. 
This establishes therefore, although in a very simple 
model, a link between the local Coulomb hole and 
the Fukui function. Further works would be needed 
to clarify this relation in the framework of exact 
DFT. However some elements of generalization can 
be already derived as follows. Indeed, although the 
EEM model used here is mainly an electrostatic 
model, the conclusions are easily generalized to a 
coarse-grain model including non-diagonal hardness 
matrix elements representing non Coulomb interactions. 
Equation (9) can be indeed generalized as 
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where we define an electronic “pseudopotential” as 
follows: 
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in which hT k′k and h xc
k′k are the non-diagonal kinetic 

and exchange-correlation hardness kernels (a dis-
crete form of the second functional derivative of the 
exact kinetic and exchange-correlation functionals).6,37 
In EEM, the kinetic and exchange-correlation ener-
gies are only represented by their contributions to 
the diagonal elements of the hardness kernel (atomic 
hardness ηk). As mentioned above, these diagonal 
elements can be formulated in terms of effective atomic 
radii r*k . By analogy with electrostatics (Born’s 
model34), these radii would represent the size of the 
atoms if they were metallic spheres. 

 Chemical reactivity concerns addition and re-
moval of atoms or fragments. We believe therefore 
that it is particularly interesting that an electronic 
reactivity index like the Fukui function can be re-
lated to chemical hardness of a molecular fragment 
as demonstrated by (16). This equation shows 
clearly that the value of the condensed Fukui func-
tion of an atom is related to the addition/removal of 
the atom from the molecule and simultaneously to 
the addition/removal of an electron from this atom. 
We hope that this point of view will stimulate fur-
ther works and numerical applications. 
 Using (16), we have shown that the condensed 
Fukui function f can be negative for two cases: over-
screening and overstrengthening. For a simple two-
site model, the negativity of the Fukui function in 
the case of overstrengthening is not compatible with 
a stable molecular system. Indeed, the negativity of f 
would violate the minimum variational principle of 
DFT which forces E(N) to be positive definite. On 
the other hand, it is the relative importance of the 
non-diagonal elements of the non-Coulomb hardness 
kernels hT k′k and h xc

k′k compared to the self-energies 
(atomic hardnesses) which determine in which ex-
tent the Born radii used in §3 represent really the 
atom sizes and thus in which extent overscreening 
could occur in a real system. We are presently ex-
ploring the relative role of these diagonal and non-
diagonal contributions of the kinetic and exchange 
contributions in the present new local description of 
the Fukui function. 

Appendix A 

In this appendix, we derive the properties of the 
model represented in figure 1. This two-site model 
has the following (2x2) hardness matrix hkk′ 
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in which we make use of the definitions of (22)–
(24). The E(N) quadratic form is positive definite if 
all the eigenvalues of h are positive. The two eigen-
values λ1 and λ2 of h (in units of e2/D) are the roots 
of the following equation: 
 

 λ2
n – (λ(k) + λk)λn + (λ(k)λk – 1) = 0. (A2) 

 
From (A2), one deduces immediately 
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 λ1λ2 = λ(k)λk – 1, (A3) 
 
 λ1 + λ2 = λ(k) + λk. (A4) 
 
The positivity of both the eigenvalues implies there-
fore the following constraints 
 
   λk > 0, (A5) 
 
  λ(k) > 0, (A6) 
 
 λkλ(k) > 1, (A7) 
 
which are (26)–(28) in the text. 
 The inverse of the hardness matrix (A1) is easily 
deduced 
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The global softness S of the molecule is obtained 
from the inverse hardness kernel, (A8), by applying 
the following relation2 
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which gives immediately 
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Using η = 1/S and (24), one obtains 
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Equation (25) in the text can be deduced by multi-
plying the numerator and denominator of (A11) by 
λ(k)/(λ(k)λk – 1), which yields 
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Now one demonstrates that the condition λ(k) > λ is 
always true if the system is stable, i.e. when the condi-
tions (A5)–(A7) are valid. Using (A12), λ(k) > λ im-
plies that 
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from which we deduce 
 
 λ(k)λk > 1. (A14) 
 
Equation (A14) is always true for a stable system. In 
case of overstrengthening, i.e. λ(k) < λ, the E(N) 
form ceases to be positive definite because follow-
ing the same reasoning one finds 

 λ(k)λk < 1. (A15) 

One ends this appendix by noting that the Fukui 
function can be written as follows 
 

 ,
2)(

1)(
−+

−=
k

k
f

k
k λλ

λ
 (A16) 

 
which is easily deduced by applying the formula2 
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′
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k

kkk hf ,1η  (A17) 

 
and by using the explicit form of h–1, (A8). Accord-
ing to (A16), when (38) is fulfilled, fk is thus equal 
to – ∞(+ ∞) for λ(k) > 1 (λ(k) < 1) as announced in 
the text. 
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